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1. INTRODUCTION

Let X - (XV ..... Xn)' be a nonsingular multivariate normal random vector which is

standardized so that E(X) - 0 and var(X) - R, where R - (p..) with p.. a 1 for all i, and

let AE IR be a permutation-symmetric region. In this paper, we provide an

approximation to P(IXA) which is both easy to compute and accurate over a wide

range of parameter values. In typical applications, A is an orthant (x: x > c;

i=l,...,n}, a union of orthants {x: . I(xk a c) = p), a cube {x: -c r x. c; i=l...,n), or

a sphere Ix: FXk2 9 C).

The problem of evaluating P(XEA) arises in many contexts. In genetic models of

the transmission of traits, this probability is related to an individual's risk of

contracting a disease: see Rice, et al.[24], Henery[8], and Curnow[2J. In

geostatistics, it is related to the probablity of correct classification in indicator

kriging: see Journel[14], and Solow[28]. It is useful in the construction of

simultaneous confioence intervals: see Miller[19], and Uusipaikka[32]. It also

appears in the middle of some time series or regression problems: see especially

Keenan[15], who shows that orthant probabilities are prediction error probabilities

and transition probabilities for certain binary time series, and Keener and

Waldman[16], who need to evaluate orthant probabilities (for dimensions as large as

35) for computing the likelihood function for rank-censored data. Our restriction on

the set A may seem quite severe; however, this formulation is already useful in the

applications just mentioned. In fact, the probability content of the positive orthant

has been the subject of many papers: see Martynov[17]. and Moran[21]. Also, the

probability content of the sphere gives the distribution of a weighted sum of

independent X2 variates: see Solomon and Stephens[27], and Imhof[10], for other

approaches.

If a multivariate normal probability were required only infrequently, then ordinary

simulation or numerical quadrature would often be adequate. However, in many

applications (see especially [15] and [16]) the computation of such probabilities is

just a small component of a much larger problem. This larger problem typically!,or

involves the estimation of parameters, and uses an iterative algorithm; thus a.

subroutine which evaluates multivariate probabilities is repeatedly called, and so []

speed and accuracy are important considerations. El
rL_

This problem is an old one, and various approaches have been proposed; we now

bri'fly review them. Numerical integration and simulation in high dimensions are .

known to be quite slow. Recently. however, Schervish[26] wrote a program for .y Codes
tod/or

, 4 l



2

computing rectangular probabilities, and tested it for dimensions r5, and pij p.

Simulation is, of course, always available in its simplest form, but standard variance

reduction techniques are hard to obtain; a notable exception is the recent work of

Moran[21], in which he gave a clever method for estimating the probability of the

positive orthant. and provided a control variate for the estimator. Plackett[23J gave

a reduction formula, but it seems practical only for n%5. The study of probability

inequalities (see Tong[31], and Eaton[S]) has provided many interesting insights and

useful results, but the inequalities themselves often yield poor approximations; see

Section 5 below for further discussion. The evaluation of multivariate normal

probabilities is closely related to the determination of volumes of sets on the

surface of the unit ball in IRn, but this relationship has only occasionally been used:

see for instance the work of Abrahamson[1], and Ruben[25]; there is a recent

revival of geometrical methods in various contexts, as seen in the work of Diaconis

and Efron[4], Johansen and Johnstone[12], and Naiman[22]. Next, expansions such

as the tetrachoric series have been tried in several cases, but difficulties here include

their slow convergence or even divergence over much of the parameter space: see

Harris and Soms[7], and Moran[20]. Finally, sometimes a direct approach is

rewarding. For instance, if p.j = p a 0, or if pja ia j where -l<a(1, then many

relevant computations reduce to the evaluation of one-dimensional integrals, which

are easy to do: see Steck[29], and Curnow and Dunnett[3].

In this paper, we will exploit the symmetry of A to provide an approximation to

P(XuA) that is expressible in terms of one-dimensional integrals; such integrals are

easily evaluated by computer. Some of the methods mentioned above come into

play: for example, we will use the case p., = p. about which we will expand a Taylor

series which turns out to be an (integrated) Gram-Charlier series, and we will use

Schervish's program for comparison. After establishing our notation in Section 2, we

introduce a simple approximation in Section 3. We compute and study correction

terms in Section 4, do two examples in some detail in Section 5, and summarize our

numerical work there. We then conclude with a brief discussion in Section 6.

2. NOTATION AND PRELIMINARIES

Let X - (X 1 .... Xn)' be a standardized nonsingular multivariate normal random vector

whose distribution is denoted Nn (0,R); thus E() = 0, and var(K) = R = (p,.) with prI

for all i. The density of X is denoted f (x;R); the univariate normal distribution is

denoted +(x) - P(X 1 5x) and its density is W(x). Let d - n(n-1)12, and string out the

correlations into a vector - ]Rd; also, let ;i be the average
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of the components of p, and let F (7....)' E IRd. E is an n-by-n equicorrelation

matrix with parameter a, where -(n-l) - < ( < 1. P is the set of n-by-n permutation

matrices, an element of which is denoted w; nl is a random matrix which is

independent of X and is uniformly distributed over Pn. The permutation-symmetric

set AEJR n satisfies A = 'A a{va: afA) for all NEP . Our main example below
involves the positive orthant Qn - {x xk z 0; k=l....,n) {x: x k 0). Unless stated

otherwise, all summations are over the entire range of the index variable: thus, for

instance, ; is a summation over all of P. Finally, let

(1) h (p) = P(XE A).

We suppress the dependence of h on A.

To derive his reduction formula, Plackett[23] proved and used the following identity

for the multivariate normal:

(2) (a''pij) 0nlX;R) = (a2/axiox.) n (x;R).

This identity has been used to establish probability inequalities and monotonicity

results for multivariate normal probabilities (see Tong[31]). We use it repeatedly

below: it simplifies many computations, and is a natural way of deriving the

multivariate Gram-Charlier series in Section 4.

The equicorrelated case is important in our discussion below, so we describe it

now. If Z = (Z 1 ..... Z nY is a N n(0,I) vector, Z is a standard normal independent of Z,

e = (1M...,1)' f n, and ak0, then V - (1-a)1 / 2 Z + al/2Z e is a N n(0,E . ) variate. Upon

conditioning on Z0, we get the single integral

(3) P(VEA) = P(Z A ,,)) 1 (t) dt.
00 (1-a) 1 /2

When A is an orthant or a cube, the integrand in (3) is just a product of one-

dimensional normal marginal probabilities, and if A is a sphere, it is a noncentral ,k 2

probability. Thus, for many cases of interest, the right side of (3) is easily

evaluated. The analogous formula for a<0 is more involved, but still tractable: see

Steck[29J. Also, moments of the form

(4) E[V 1 '1 .. . V'n I(VA)]
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are needed below. and they can be expressed as a single integral just like (3). The

same argument applies to the case puea&,. with -1 < 1 < for all i. which is

generated by V. (1..1 2)1/ 2 Z , aZ *

3. A SYMMETRY ARGUMENT

Since A - vA for all wP n, P(XEA) = P(gXtA) for all reP n, and P(XeA) z P(11XtA)
also. Consider f1x; it has exchangeable components and it is a scale mixture of

normals with density

(5) fn(x;R) = (ni)-1; 0n(x;vRv').

Its first two moments are E(flX) - 0 and var(IIX) = (n)-l';wRRv' = E-.. We get our

simplest approximation by fitting to f n the normal density fn(X;Ex , which shares the

same first two moments: thLs,

(6) h(p) = h n().

This approximation has several appealing properties. First, it is easily evaluated for

many cases by the argument leading to (3). Second, there is the following heuristic

argument. Let Pd be the set of d-by-d permutation matrices, and let Pd' be the
subset of it induced by the correlation vectors of {vX: wsP }. The points {rp:

If Pd') are the vertices of a regular polygon centered at ." Since h has the same

value at each vertex of this polygon, and since it is a smooth function of p, its

value at the center of the polygon should not be far from its value at a vertex.

Third, it comes from the least squares fit of the equicorrelation matrices to R; that

is, it minimizes (p-a)2 over a. And fourth, a Taylor expansion of h about
I.J I n

(a.....a)' gives

(7) hn(p) = hn(a) + Dhn(a)'(p-a) + remainder,

where D denotes the gradient. Each component of Dh (a) is, by Plackett's identity

(2).

(8) (aap.j) SA fn(xE) dx= SA ("PiJ fn(xE.) dx

,jAn.4 - t~. -,
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SA (a2Iaxpx) 0E,(!-E.) dx- SA (821aX 13X2) x2 (x;E) dx.

The interchange of the order of differentiation and integration in (8) is easily

justified, and the last equation there comes from the symmetry of A. The linear term

in (7) is thus zero if a=7, so that (6) is also a good first order approximation.

Approximation (6) is based on only two moments, so it is not expected to be

accurate for extreme tail probabilities, for example for P(X :> c; all i) for large c;

see Steck[303 and lyengar[11] for a treatment of such cases. Also, it is clear from

the heuristic argument above that the approximation should improve as (P J)2
'.J i

decreases. Thus, we neod higher moments of IIX to provide correction terms, so we

now turn to the higher order terms of the Taylor expansion (7).

4. CORRECTION TERMS

To write the Taylor expansion of h n(p) about hn (7), we need additional notation: let

= (k k.2 consist of nonnegative integers k.ij for i<j, and let 'k k . +..

k ; let m =(m ...,m), where m.= k. . I k- and note that m = 21k. Next,
n- 1.n -n I i ,j .>. .J ."

let

(9) pk = k1.2.,. Pn 1 .nkn-.n;

(10) Dkhn(P) = (8P/P1.2k .2. . .8pn 1.nkn-1 ) hn(p), for ik' =p;

(11) Dro n(x;R) = (a2 P/ax 1 ml.. ax nn) On(x.R), for rnI = 2p.

(12) C(p,k) = p! / (k 1.21. . .k n-1n1), for 1k: = p.

We then have

(13) h (P) IN OFp )-1 " C(pk) (p -k Dkhn(p) + remainder.
n = Ikl=p - - - h r

Consider the integrands in (13): on the left side, we have Itn(xR); by changing the

order of differentiation and integration on the right side and by repeatedly using

Plackett's identity (2) there, we get

(14) V(xR) = $pl:- Z C(pk) (p 7')k Dm (.E- * remainder

"IkRp " I 1
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SL"pIFpl)-p C(p,k) (p - 7 )k H,(x;E 0 fx;E + remainder.

where H(x;E is the m th order Hermite polynomial. Thus, the Taylor expansion (13)
yields the Gram-Charlier series expansion of fn(x;R) about on(xE ); see Johnson and

Kotz[13] and Mihaila[18] for a discussion of the multivariate Gram-Charlier series

and Hermite polynomials. Of course, we could also interpret the integrands of (13)

as the Gram-Charlier expansion of the mixture of normals 0n(x;R) about *n(x;E ; we

get a different expansion, but either interpretation gives the same correction terms

for the approximation (6).

For our purposes, the important feature of (13) is that each Dkh n(,) can be expressed

as a one-dimensional integral; this is because of the Hermite polynomials of (14) and

the argument leading to (3) and (4). It is easy to see that the pth term of (13)

requires (on the order of) p d additions, where d = n(n-1)12. Note that no matrix

inversion is necessary to evaluate the correction terms. In the next section, we give

details of one special case to illustrate our use of (13).

The convergence of (13) is a difficult issue in general. One special case that is

tractable is the trivariate positive orthant, Q for which h 3(P) = 1/2 - (1/4)

(cos-l(p 12) + cos'(p13) + cos-(P 23)). Here, (13) comes from the expansion of cos- 1

about p. For any fixed o ;> 0 or 7 ; 3-2(31I2), (13) is convergent for all choices of
p leading to that 7 and yielding a positive definite matrix R. However, when 7 t

(3-2(3i/2),0), (13) is not always convergent: take for instance p = (0.45,-0.60,-0.75)'; the

radius of convergence for cos - 1 about 7 a -0.30 is 0.70, and P12 - 0.45 lies beyond

that. We will rigorously study the convergence of (13) and (14) elsewhere; here, we

depend upon numerical examples to assess the performance our approximation.

5. EXAMPLES

Our first example deals with the positive orthant Q n x x 2 0). We give explicit

expressions for the first two terms of the Taylor expansion (13), and describe their

numerical evaluation. The algebra here is straightforward but rather tedious, so we

suggest the use of MACSYMA for other applications. We only do the case ;020 here.

The first term of the Taylor expansion is

(15) hn() ( 112)n  0(t) dt,
-0
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where 7 - 7/(1- ). This expression can be accurately evaluated using a Gaussian

quadrature formula and Hill's [9] algorithm for computing *. For r%5, quadrature is

not necessary; this is because (15) reduces to 112, 1/2 - (12r)cos-'(), and 1/2 -

(3/40)cos-(o) for n a 1. 2. and 3. respectively. For n=4. a simple formula is not

available, but Steck[29] provides an accurate approximation; and for n=5, we have

-3, 5 o_()5_4
(16) h ( ) - - Cos + -

We need (15) for nO below, so define h n() 0 for n=1,2,..., and h0 (,) = 1. We also

need the following restricted moments:

(17) fn(a;a .... at) = E[V1 a ... Vtat I(VEo)M

where V is a N n(0,E ) variate, a1Z . . . ZatPl, and 1gtgn. Using the argument leading

to (3), we can rewrite the integral in (17) as a one-dimensional integral: for instance,

(18) f (a;1) = (1-a)1 12 P [#(tb) + t6(t6)) 4(t6) n- 1 0(t) dt,
-00

where = (a/ j1-a) 1/2. For small values of n, this integral can be evaluated

explicitly; else, numerical quadrature is required.

Next, the quadratic form in (13) has an expansion whose terms are proportional to

(19) (P ijP(Pkl no (a4 /ax axjaxkax,) n(x;E dx,
n

with i<j and k<l. Such a set {i,jk,l) has two, three, or four distinct elements. If

there are four, then the integral in (19) is

(20) 4 (0;Eso -4  n_ 4 (x;E0 ) dx,

where a = p/(1+47p; the integral here is evaluated in the same way as (15). When

{ij,kI} has three distinct elements, the integral in (19) is

(2,) (n-3) 0 3 (0;EA A( ) fn_ 3 (8.;1),

where
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(22) A(p) " p (1 3p)1/2 I (1 (n-1)) ((1-/ ;)1,2)) t / 2,

and ,s=0/(1*3). For r%6, the expectation fn- 3 in (21) can be evaluated explicitly in

terms of elementary functions; we omit those details. And when {i.j,k,l) has two

distinct elements, the integral in (19) is

(23) 2 (O;E) [a(7) (f 2 (y;2)(n-3)f -2(;1,1)) C(7Sn- l _2(x;E ,) dx]1,
-n-n-2 "y

where

(24) B(7) = (n-2)(1.2 ) / (1-P 2 ) (1+(n-1) )2 ,

(25) C(p) = p I (1-) (1+(n-1)),

and y=/0I(1+2p); the expectations fn- 2 here can be explicitly evaluated without

numerical quadrature if n%5. Thus, we can use the expressions (20),(21), and (23) to

get the first correction term. We omit the next correction term which involves the

third derivatives of h n(7).

We now turn to our numerical work. For dimensions n = 3, 4, and 5, we generated

correla ion matrices R with pIj a 0 for all ij. For each case, we computed the true

probability of the positive orthant using the program of Schervish. We also

computed approximation (6) and corrections from the second and third derivatives of

(13). We then plotted the relative c.rror of the three approximations against the
"variance in p": (n - 1 2 (p - p)2; these plots are shown in Figs. 1-9.

I.J Ii

For n=3, the relative error decreases considerably as we add higher order terms of

(13). Two parts of the scatterplot are clearly separated in Figs. 1 and 3 (and

somewhat less clearly in Fig.2): the upper part corresponds to "extreme" p of the

form (.,P 13,0. 9 ), and the lower part corresponds to less extreme p. For n = 4, the

relative error of the third-order approximation is often smaller than that of the

second-order one, although the difference between the two is not great; thus, the

range of relative errors shown in Figs. 5 and 6 are the same. For n = 5, this

improvement is somewhat greater. A conclusion from our work is that (for

correlation matrices of this kind) three terms of the series (13) seem to be enough to

give a relative error of less than about seven percent.

4,.
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Next, we turn to the speed of our algorithm. In Table 1. we compare the time

req,;ired (T ) to compute the first three terms of our approximating series with the

time required (T 2) to compute the exact probability (demanding three-place accuracy)

using Schervish's program. All times are given in seconds; they are the average of

five runs on a VAX 750. For all cases cited in Table 1, the relative error of our

approximation was less than 0.03. Notice that Schervish's program is much faster

when p is close to 7 than when it is not. The reduction in the time needed is

especially evident for n a 5 when the correlation matrix is not too close to the

equicorrelated case.

Our second example involves exceedance probabilities. For a fixed constant c>0,

let S - I I(X a c), and let pn(P) = P(S =k). Then
nl K k n.k - n

(26) p = (P n .( P )  .,p nn(p))

is the exceedance distribution which we approximate by pn (,). Note that the mean of

the exceedance distribution and that of its approximation are the same: E(S n;p) =

E(S n;P) = n (-c). We now study the second moment of the exceedance distribution

and that of its approximation; this study will yield new results about our

approximation of orthant probabilities. The variance is given by var(Sn ;p) = n~l(-c) -

n2 (-c)2 
* I P(X > c, X a c), which depends only on bivariate quadrant probabilities.

We need the following lemma, the proof of which is an easy application of

Plackett's identity.

LEMMA 1: Let V be a N 2(0,R) variate with P1 2 
= r. Then F(r) - P(V 1 a c, V2 Z c) is

convex for r in (0,1); for c z 21/2 - 1, F is convex in (-1,1); and for c=0, F is concave
in (-1,0).

This lemma yields the following

PROPOSITION 1: If (i) p Z 0 for all i and j, or (ii) if c k 21/2 _ 1, then var(S ;p) z

var(S n;); if (iii) c=O and p I ; 0 for all i and j. then var(Sn;p) :5 var(S n;,).

Proof: The function g(p) var(S n;p) is a symmetric function of the components of

p. Under (i) or (ii), g is Schur convex function of p (see Tong[31,p.106]); and under

(iii), g is a Schur concave function of p. Since p majorizes /', the result follows.

Now consider the case of the positive orthant (c0, and S n=n) and suppose that pij

> 0 for all i and j; let a • (a... ), where a - min p and 8 u (.,..... B), where ,8 *
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max {p..}. From the variance inequality in Proposition 1, it is tempting to conjecture

that

(27) pn.n(p) > p~().

This is indeed true when n=3 (because -cos - 1 is convex in (0,1)), and it represents an

improvement over the bounds derived from the result of Slepian: pn.n(a) : pnn(p) ;

pn.n(.B) (see Tong[31,p.10 and p.169)). Examples show that inequality (27) is not true

for larger n. However, Figures 10-12 show that the right side of (27) is a much better

approximation to the positive orthant probability than are the Slepian bounds: for the

same correlation matrices studied above, these Figures compare the relative error of

the Slepian bounds with the relative error of our approximation (6); our approximation

was better in every case (except, of course, when the the matrix was already

equicorrelated. in which case all three coincided with the true probability.)

The same method gives similar results for the cube: Tn = I (Xk < c), =
P(T :k). The analogs of Lemma 1 and Proposition 1 come from the behavior of G(r)

= P( V 1 c,1 c).

6. DISCUSSION

The problem of evaluating multivariate normal probabilities is a difficult one, and it

is likely that there is no panacea; that is, an approximation which is tailored to work

well for one set of parameter values will probably be inadequate for another. Thus,

many methods have been proposed in the literature. Our contribution to this

literature is to show (from our theoretical and numerical work above) that (13)

provides a good approximation to probabilities of permutation-symmetric regions, and

that it is easily evaluated. One drawback of our proposal is that useful error bounds

for our approximation are not yet available; here, we depend upon numerical work to

assess the error. Our methods can also be applied to the problem of evaluation

Ef(X), where f(x) = f(wx) for all velP , and also to random variables with othern

elliptically contoured distributions.
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Table I

N. fT T

4 (.2v.2#.2.2,.2,.2) 0.81 1.51

4 (.2,.4,.4,.6,.8,.8) 0.83 7.93

4 1.2,.2,.4,.4,.4,.8) 0.83 8.01

5 (.2,.2,.2,.2,.2,.2,.2,.2,.2,.2) 0.91 14.60

5 (.0,.o,.o,.2,.2,.2,.4,.4,.4,.4) 0.88 16.80

5 (-2,-2,.2,.4,.6,.6#.6.6,.6,.8) 0.88 44.90
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